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Summary

This paper reviews fifteen current mathematical models for the dispersion of acci-
dental releases of heavy gases until they dilute with air to non-flammable or non-toxic
concentrations. The models are broadly classified into K-theory models (5 in number)
and slab models (10 in number). In addition, 4 jet release models are given that can de-
scribe elevated releases of heavy gases.

For each model, a description is given of the mechanistic features claimed, the ap-
plicability to differing types and geometries of release, the ease of availability to users,
and the degree to which calculated results have been compared with field data. To facil-
itate comparison, these characteristics are listed in a common tabular form for each
model.

1. Introduction

Mathematical modelling of the dispersion of the vapours resulting from
accidental releases of volatile liquids and heavy gases has been helpful in
establishing safe designs and operating procedures for the transport and
storage of flammable and toxic materials. The experimental data which be-
came available in the early 1970’s made it evident that a new class of
models was required to describe the phenomena observed. Heavy vapours
usually form low, flat clouds which spread because of their own density
even in the absence of wind. It was recognized that attempting to describe
such systems by adapting Gaussian models suitable for neutrally or positive-
ly buoyant clouds was inherently inadequate [1]. Consequently, many
models have been proposed*, though often after only a limited comparison
of the predictions with experimental data.

*These models are being surveyed by a working group under the auspices of the UK’s
CIA, and an abbreviation of this survey is presented in this paper.
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One objective of heavy vapour dispersion models has been the prediction of
the effects of a very large spill of liquefied natural gas (LNG) onto water, such
as may occur after an accidental collision involving an LNG carrier. The sud-
den release of the contents of a cargo tank containing 25,000 m® LNG has
been defined by the U.S. Coast Guard as a “‘credible spill”’. In his 1978 review,
Havens [2] showed that a number of models produced widely varying esti-
mates for the distance to which a flammable cloud would extend under a
wind of 5 miles per hour. Since that time, the range of the estimates repre-
sented by the model predictions in Havens’s report has narrowed as model-
lers have refined their simulations. Some of the models used in Havens’s re-
port are now considered obsolete and superseded by revised versions. A re-
cent comparison of model predictions with experimental data by Woodward
et al. [3] showed quite close agreement of the predictions of four of the
more recent models. This comparison involved fairly small spills, but there
is reason to expect model predictions for large spills to also converge as the
uncertainty in heavy vapour cloud modelling decreases.

Present models designed to deal with heavy gases are usually placed into
one of two categories: K-theory (eddy diffusivity) models and slab (also
known as top-hat or box) models, although some models do not fit neatly
into either category. K-theory models numerically integrate suitably
simplified equations of mass, momentum, and energy conservation, in either
two- or three-dimensional form. In principle, K-theory models can incor-
porate terrain effects and complex geometries, and describe wake effects
around structures. Mass transfer is assumed to be proportional to concentra-
tion gradients and to occur by eddy diffusion. The application of this type
of model to density-stratified layers requires the extension of diffusivities
and viscosities obtained either quasi-theoretically or experimentally from
physically related phenomena (such as boundary layer meteorology).

Slab (or top-hat) models assume that mass transfer occurs by entrain-
ment across the density interface of a cloud with an assumed shape (fre-
quently cylindrical, or at least with vertical sides and a horizontal top) and
that internal mixing is fast enough for the concentration within the cloud
to be uniform. Air entrainment velocities are assumed to depend on tur-
bulence levels, density differences, and cloud speed. Entrainment velocities
are determined from laboratory experiments or by comparing model predic-
tions to data from field experiments. This approach, like K-theory, is an
idealization, since real vapour clouds are rarely cylindrical or perfectly flat-
topped, and the motion of entrainment velocity may oversimplify complex
phenomena. The test of any model is how well it extrapolates to situations
beyond those for which the model parameters were adjusted.

As a heavy gas cloud dilutes, it will reach a point where it is no longer
heavy (i.e., its density becomes close to that of the surrounding air). At
this stage, it is important (if the cloud is still flammable or toxic) that the
correct mathematical description be given of the subsequent neutrally
buoyant dispersion. Some models require a specific (and sudden) transition
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from a negatively buoyant to a neutrally buoyant dispersion mechanism;
others account for this transition naturally and continuously.

Sources of heavy gases, like models, are also usually classified according
to two ideal types: continuous sources (steady-state liquid pools, for in-
stance, or small ruptures in a pipe or vessel) and instantaneous sources
(severely ruptured vessels, for instance, or rapidly emptying pressurized
tanks). From the first type of source, an unvarying plume of heavy gas will
be formed if the source lasts long enough, and continuous or steady-state
plume models suffice. From the second type of source, a “puff” of heavy
gas will be formed which will be advected downwind, and will grow and
dilute with distance downwind. In this case, an instantaneous heavy gas
model applies. A real heavy vapour source, however, such as a liquid pool
which is both spreading and vaporizing, will be neither continuous nor in-
stantaneous, but will vary in time. Of those few models which can treat this
type of source, most incorporate three-dimensional K-theory. Also, an ap-
proach to adapting steady-state models to time-varying sources has been de-
scribed by Colenbrander [4], which works well for all cases except those
with very low wind speeds.

All heavy gas dispersion models suffer from the fact that good data on
the dispersion of heavy gas clouds are scarce. Thus, many models are not
validated adequately. Comparisons can be and have been made only with
the various (normally small-scale) data that exist. The least desirable situa-
tion, which is happily becoming rarer, is the development of a so-called
“model” which is little more than a means of numerically reproducing a
particular set of field data. Confidence in the general application (e.g. extra-
polation to larger spills) of such “models’ is clearly limited.

2. Available models

Overall characteristics of models currently in use are listed in Table 1 and
described in more detail in Tables 4a—c. Comparisons with experimental
data are shown in Table 2 and the experimental data are summarized in
Table 3. Models regarded as obsolete are listed in Table 5. We include in
the tables only those models which have been published in the open litera-
ture. We are aware of a few models that have not yet reached the stage of
publication, and others that are more recent or developing versions of pub-
lished models, but both these categories are excluded from this survey.

Table 1 indicates the types of sources each model was designed to treat.
Blow-down calculations and calculations of liquid pool spread and vaporiza-
tion are usually done with separate models, but it is possible to couple such
source models directly to heavy vapour dispersion models.

A number of comparisons of model predictions with experimental find-
ings have been made, and Table 2 shows our evaluation of all of which we
are aware. Unfortunately, not all such comparisons have been published, so
independent verification of the conclusions indicated may not be possible.
We can only urge authors to publish all such comparisons in the future.
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TABLE 5

Some obsolete heavy gas models

Author Model Company Model replaced by
and reference name affiliation

(a) Models for pool evaporation and cloud dispersion

P.H.M. te Riele [48] — Shell Research HEGADASII [4]

D.S. Burgess et al. [49,50] — US Bureau of Mines [see 2]

J.A. Fay and D.H, Lewis [561] - MIT Fay [14]

G.F. Feldbauer et al. [41] - US API [see 2]

— CHRIS USCG [see 2]

— FPC US Federal Power [see 2]
Commission

H.J. Nikodem et al. [52,53] - Battelle, Frankfurt Flothmann & Nikodem [15]

(b) Models for cloud dispersion only

R.A. Cox and D.R. Roe [64] — Cremer & Warner Cox & Carpenter [10]
(with British Gas)

K.J. Eidsvik [11] 1st Norwegian Inst. of 2nd version {12,13]

version Air Research
G.D. Kaiser and DENZ SRD, Risley (UKAEA) Fryer and Kaiser {16]

B.C. Walker [55]

Tables 4a—c list model availability and characteristics. Note that the term
“diffusion” is sometimes used to distinguish air/vapour mixing on the cloud
edges from air entrainment into the bulk of the cloud. This artificial distinc-
tion is used primarily with slab models which may assume very sharp con-
centration gradients on the cloud boundaries (where no ‘“diffusion” is
allowed) while still diluting the overall cloud concentrations by air entrain-
ment into the bulk of the cloud.

Some of the slab models listed in Table 4b are “advanced” in the sense
that they each contain at least one feature beyond simple slab or top-hat
theory*. For example, the HEGADAS II [4] model initially uses near-
Gaussian composition profiles in the vertical dimension and on the edges of
the cloud. Also, this model overcomes the limitations of being a steady-state
model by means of repeated model runs using “observers” released to float
over the cloud and report what they ‘“see.” This “observer” method is quite
general and could, in principle, be extended to other models. Table 4b also
lists the Eidsvik model [11—18], which incorporates asymptotically correct
functions of physical variables in place of constant entrainment velocities.
Both HEGADAS II and the Eidsvik model provide a smooth, natural transi-
tion to neutral buoyancy Gaussian models, as does the Flothmann and
Nikodem model [15].

Models developed for atomic energy applications will usually be able to

*A good summary of the basic theory is given by Havens [56].
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describe fallout and, to a limited extent, reactions (such as the hydrolysis of
UF¢). One such model, TRANSLOC [6], has recently been improved so
that it considers aerosol formation and evaporation. This capability is not
generally available elsewhere, but since aerosol phenomena can also play an
important part in the thermal balance in the cloud, future models may need
to incorporate it.

Some models specifically address the release of heavy gases from an ele-
vated stack or vent. Except for Bloom’s model, all those listed in Tables 1
and 4c are based on Ooms’s plume path computer model [25], which can
describe both momentum jets and plumes with positive or negative buoy-
ancy. Under certain circumstances the plume that is produced from an ele-
vated source will follow a descending path, and then disperse as a continu-
ous heavy gas cloud when the gases reach the ground. In a similar manner,
jet release of heavy gas from a ground level vent can form a heavy gas
cloud rapidly diluted by momentum effects, followed by less rapid dilution
effects at ground level. Some modellers [22,24] have treated these situa-
tions by marrying a plume path model that can describe descending plumes
to a heavy gas ground-level model. For details of the way transition
between the two parts of each model is achieved, see the original papers.

3. Experimental data available to support the models

A selection of heavy gas dispersion experiments is listed in Table 3 and a
fuller account is to be found in a following paper in this issue [57].
Comparisons with specific models are shown in Table 2. A recent and more
detailed comparison of five particular models with certain spills from these
experimental programmes is given in another paper in this issue [3].

Prior to 1980, experimental spills were all in the range of 1—11 m3 of
liquid. More recently, spills of up to 20 m?® of liquid methane (LNG) and
refrigerated propane have been conducted by Shell Research Ltd. (the
Maplin Sands tests), but the results have not yet been fully reported*.

Spills of 40 m® of LNG have been conducted by the U.S. Department of
Energy (at China Lake, California), and the results are also expected soon*,
These releases are within the range of expected accidental releases for spills
on land. For spills over the ocean, the maximum release of LNG is usually
considered to be 25,000 m?, the size of a single storage tank on an LNG
transport ship. The dispersion behaviour of gas clouds generated from spills
of this order of magnitude might be affected by physical processes which
are not accurately described from the relatively small scale experimental
work done so far. Thus, there is still felt to be a need for data from well
instrumented release of large quantities of gas in low winds. Spills of around
350 m® of LNG are being discussed in the United States [59]. Good experi-

*Preliminary accounts of both the Maplin (1980) and the China Lake (1980) experi-
ments are to be found in later papers in this issue [57,58].
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mental data from spills of this size would reduce the necessary scale-up to
the large postulated spills by an order of magnitude and therefore improve
confidence in model predictions for very large spills.

4. Assumptions of the models

Particular models often make specific assumptions, as indicated in
Tables 4a-c. However, some assumptions are generally made by most
models. These include:

(1) The dispersing cloud moves over flat terrain or water.

(2) The ground (or water) has constant roughness.

(3) The ground (or water) has constant thermal properties.

(4) There are no obstructions to the wind or moving cloud.

(5) The contaminant gas undergoes no chemical or physical reaction dur-
ing dispersion (though one or two models designed for atomic energy
applications are exceptions).

(6) Local concentration fluctuations are not predicted.

K-theory models can relax the assumptions of flat terrain and of no ob-
structions, within the limitations of computer capacity.

Slab or top-hat models apply additional assumptions:

(1) The cloud has a flat top.

(2) The concentration of contaminant is uniform across the cloud or, us-
ing a more general assumption, similarity profiles of velocity or con-
centration are imposed on the gas cloud.

(3) The cloud slumping velocity is described by the “‘gravity intrusion”
models*,

5. Data and input parameters required by the models

Data required to describe the release rate, pool spread, and vaporization
include:

(1) The physical properties of the spilled material: molecular weight,
density, temperature, boiling point, latent heat of vaporization, etc.

(2) The physical properties of the substrate: heat capacity, thermal con-
ductivity, etc.

(3) The nature of the spill: type (instantaneous, continuous, or time-
varying), size (volume or volume rate), source (point, line, pool, ele-
vated), type of release (momentum jet, buoyant plume, flash vaporiza-
tion, etc,), initial state of release (dilution with air, liquid aerosol
content). '

* A recent paper discusses gravity flow in the inertial and viscous regimes [60].
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Additional data required by cloud dispersion models are:

(1) The nature of the dispersing regime: roughness of surface, surface
temperature, the degree of water pick-up in the boiling process (which
may be important for LNG spills on water).

(2) Atmospheric conditions: wind speed, wind velocity profile, stability
category (Pasquill or other localized definition), inversion layer height
(if this affects the cloud), air temperature and humidity, barometric
pressure.

Model parameters include the following:

(1) Diffusion coefficients (for ‘K’ models) in the y and z directions (and
also x direction for instantaneous spills).

(2) The vapour production rate and source radius (if not already
calculated).

(3) A gravity spreading constant.

(4) Entrainment coefficients (for slab models).

(5) The shape and dimensions of the cloud edge and top surface.

(6) Forced and free convective heat transfer coefficients.

6. Use of model computations

The principal parameter of interest in any particular application is the dis-
tance to the point where the cloud is no longer ignitable or toxic. For flam-
mable vapours, this is commonly defined as the distance to the LFL (lower
flammability limit), which is, for example, 5 vol.% for methane and 2 vol.%
for propane. Of particular interest is the predicted extent of a flammable
cloud at any time following a spill. At present, the dependencies of the pre-
dictions of different models on, for example, size of spill or windspeed are
not in agreement. Thus, some models show a steady increase of dispersion
distance with windspeed while others show windspeed to decrease disper-
sion distance, to have no effect on it, or to cause it to go through a max-
imum as the wind speed changes. The models also show that spill character-
istics, weather stability, and humidity can all significantly affect dispersion
behaviour.

Downwind dispersion distance is not the only parameter that can be
calculated, or the only parameter of interest. The width and height of the
flammable or toxic cloud can be relevant as well as the concentration as a
function of time at a fixed location. Also, the extent of the visible
cloud is a matter of significant practical interest. (There is, however, no
general relationship between the visible edge and the gas concentration: for
cold clouds, determination of the visible edge requires the effects of ambient
humidity and heat transfer to be carefully modelled.)

Calculations are frequently made to the LFL/2 concentration distance,
rather than to the LFL distance, on the grounds that small volumes
(“pockets’) of vapour can have concentrations considerably greater than
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the time-averaged concentration. Making the calculation in this way, of
course, greatly increases the maximum downwind distance calculated (usual-
ly by a factor of about 1.5, but this depends on the model and on the
vapour release conditions). There is little quantitative evidence to support
this procedure, least of all for heavy-gas dispersion phenomena. However, in
circumstances where it is used, it is reasonable to assume it over-estimates
the distance at which the cloud is no longer ignitable. This is clearly an area
where research is required in the future.
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